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Abstract— Dexterous robotic hands enable robots to perform
complex manipulations that require fine-grained control and
adaptability. Achieving such manipulation is challenging be-
cause the high degrees of freedom tightly couple hand and arm
motions, making learning and control difficult. Successful dex-
terous manipulation relies not only on precise hand motions, but
also on accurate spatial positioning of the arm and coordinated
arm-hand dynamics. However, most existing visuomotor policies
represent arm and hand actions in a single combined space,
which often causes high-dimensional hand actions to dominate
the coupled action space and compromise arm control. To
address this, we propose DQ-RISE, which quantizes hand states
to simplify hand motion prediction while preserving essential
patterns, and applies a continuous relaxation that allows arm
actions to diffuse jointly with these compact hand states.
This design enables the policy to learn arm-hand coordination
from data while preventing hand actions from overwhelming
the action space. Experiments show that DQ-RISE achieves
more balanced and efficient learning, paving the way toward
structured and generalizable dexterous manipulation. Project
website: http://rise-policy.github.io/DQ-RISE/.

I. INTRODUCTION

Dexterous robotic hands have become a central focus in
robotics, allowing robots to interact with the physical world
in ways that resemble human manipulation [39, 46, 48].
With multiple independently actuated fingers and rich contact
surfaces, they can perform complex manipulations beyond
parallel grasping [14, 52], including precise in-hand reorien-
tation [1, 5, 6] and adaptive gripping for objects of diverse
shapes and sizes [16, 54, 59]. Beyond these fundamental
tasks, dexterous hands can use tools, coordinate bimanual
actions, and carry out intricate assembly procedures [8, 28,
61], bridging the gap between rigid robotic actuation and
human-like flexibility. Together, these capabilities define the
scope and promise of robotic dexterity.

However, these abilities come at a cost: the additional de-
grees of freedom (DoF) make manipulation highly complex
and tightly coupled with arm motion. To illustrate, consider
the everyday task of opening a jar by hooking onto its lid
and rotating it until it comes off, as depicted in Fig. 1.
Successful manipulation requires not only accurate hand
motions to twist the lid, but also two often overlooked aspects
regarding the arm: (1) precise arm localization —bringing
the end-effector exactly to the lid’s position; and (2) arm-
hand coordination — when the fingers hook the lid, the
arm must simultaneously press downward to prevent lifting
the jar. Together, these requirements highlight that beyond
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Task. Open the jar by hooking onto its lid and rotating it until it comes off.
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Fig. 1: Dexterous Manipulation from the Action Prediction
Perspective. Beyond hand motion, successful dexterous manipu-
lation also requires precise arm localization and coordinated arm-
hand dynamics. (A) Existing visuomotor policies predict arm and
hand actions jointly, causing hand actions to dominate the combined
action space and arm localization to suffer. (B) Naively separating
arm and hand predictions can lead to incoherent coordination. (C)
Our approach quantizes hand states to preserve hand motion while
jointly diffusing arm actions, enabling precise arm localization and
smooth arm-hand coordination.

finger dexterity, the primary goals of dexterous manipulation
include spatial accuracy of the arm and cooperative dynamics
between arm and hand.

From the perspective of robot action prediction, visuomo-
tor policies should output both arm and hand actions. Most
existing policies treat them together in a single combined
action space [17, 22, 33, 49, 51], as shown in Fig. 1A.
While convenient, this approach often leads to imbalanced
learning: the high-DoF hand actions dominate the combined
action space and hinder accurate arm control, as confirmed
by our experiments in §IV-B. This observation motivates a
clearer functional distinction: robotic arms primarily handle
spatial localization, while dexterous hands are responsible
for executing fine-grained actions. Accordingly, visuomotor
policies should focus on spatial localization for the arm
while memorizing action patterns for the dexterous hand.
However, naively disentangling arm and hand action gener-
ation, as illustrated in Fig. 1B, can break their coordination
and limit overall policy performance.

Building on this insight, we propose DQ-RISE, an exten-
sion of the base visuomotor policy RISE [53] that introduces
structured action prediction for dexterous manipulation. We
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quantize dexterous hand states into a compact set of task-
relevant patterns, reformulating hand action prediction as
a classification problem analogous to gripper open/close
control. To maintain arm-hand coordination, we further in-
troduce a continuous relaxation process that enables the
policy to diffuse arm actions jointly with quantized hand
actions [23], thereby preserving fine-grained dexterity while
improving arm localization. In addition, we design a hybrid
dexterous teleoperation system for demonstration collec-
tion, which facilitates intuitive arm-hand control compared
to existing systems. Extensive experiments across diverse
dexterous tasks demonstrate that DQ-RISE achieves more
balanced and efficient learning than other action prediction
schemes, highlighting a practical pathway toward scalable
and generalizable robotic dexterity.

II. RELATED WORKS

A. Dexterous Manipulation

Dexterous manipulation has recently attracted consider-
able attention in robotics. Owing to the high DoF of dexter-
ous hands, prior works have primarily relied on reinforce-
ment learning to acquire complex manipulation skills [1,
3, 5, 6, 8, 34, 43, 70]. These approaches typically learn
state-based policies in simulation with carefully designed
reward functions [38]. To bridge the gap between simulation
and the real world, where observations differ and privileged
state information is unavailable, researchers have applied
techniques like sim-to-real transfer [34, 43] and teacher-
student distillation [6, 9] to improve the policy’s adaptability.

Another line of work learns dexterous hand behaviors
from human demonstrations [31, 42] or teleoperated demon-
strations [17, 22, 33, 49, 51] within the imitation learning
framework. However, as discussed in §I, existing imitation
policies mostly predict arm and hand actions jointly in a
naively-combined high-DOF action space, often resulting in
unbalanced learning and suboptimal hand-arm coordination.
To address this limitation, we propose disentangling the
joint prediction problem into a more principled and tractable
formulation by leveraging the distinct properties of arm
motions and hand actions.

B. Quantization in Robotics

Quantization in robotics can be broadly categorized into
two main directions: observation quantization and action dis-
cretization. Common tools include VQ-VAE [40, 45, 66] and
VQ-GAN [13], which leverage generative models [20, 27]
and discrete codebooks to produce discrete representations
of high-dimensional data, enabling more efficient learning.

Observation quantization compresses high-dimensional
sensory inputs like images into discrete latent codes. Vi-
suomotor policies and vision-language-action models often
leverage this for future observation prediction [4, 7, 29,
32, 63, 68], as predicting latent codes of observations is
more tractable and useful than forecasting their raw pixel
values [32]. This future prediction serves as an auxiliary
task that supports action generation and reasoning [29]. Ac-
tion quantization discretizes continuous control signals into

representative primitives or codebook entries [30, 55, 60].
This simplification improves learning stability and overall
performance. However, most existing approaches focus on
action chunks that model future robot motion [69].

In contrast, we propose to quantize the dexterous hand
state (single-step action) into compact and meaningful dis-
crete codes. Rather than modeling motion trajectories, we
directly model hand states, making the quantization more
explainable and intuitive. Empirically, we also found that
quantizing action chunks often produces less meaningful
codes and worse performance compared to state quantization.

C. Dexterous Teleoperation System
Compared with teleoperation systems for grippers [12, 15,

18, 19, 56, 69], dexterous hand teleoperation is substantially
more challenging because operators must control high-DoF
configurations, coordinate many coupled joints, and handle
complex contact dynamics while also managing arm motions.
Existing approaches tackle this in different ways: some
introduce hardware that directly maps human hand motion
to robotic joints [17, 49, 50, 58, 67], while others employ
hand pose estimation [10, 25, 41, 44, 62] or motion-capture
gloves [51] to capture human keypoints, and then retarget
them to the dexterous hand [36, 64]. For joint hand-arm
teleoperation, most systems rely on VR/AR joystick-based
interfaces for arm control [10, 25, 33, 35, 41, 51], while a
few utilize exoskeletons for full-arm mapping [17, 49, 62].

Recently, several studies have simplified human control
by defining discrete gestures during data collection [33, 35].
While this is conceptually similar to our insight of quantizing
hand states, the key difference is that their approach relies
on manual quantization at collection time, whereas we apply
automatic quantization during policy training. Enforcing
discrete gestures during collection can increase the cognitive
load on operators, bias their control strategies, and limit the
advantages of high-DoF dexterous hands over low-DoF end-
effectors, often leading to unnatural demonstrations. To this
end, we let operators freely control the hand during data
collection and perform quantization afterwards for effective
and interpretable policy learning.

III. METHOD

In this section, we first tackle data collection by presenting
our VR-glove hybrid dexterous teleoperation system (§III-
A). We then quantize hand states into discrete latent codes
(§III-B). While a straightforward approach is to treat these
discrete states directly as a classification problem for policy
learning, we find that jointly diffusing arm and hand actions
improves action consistency and overall performance. Hence,
we re-index the discrete hand states for continuous relaxation
(§III-C) and use the resulting relabeled demonstrations to
train the base visuomotor policy, ensuring more accurate and
robust hand-arm coordination during manipulation (§III-D).
An overview of our policy is illustrated in Fig. 3.

A. Hybrid Dexterous Teleoperation System
As shown in Fig. 2, our platform consists of a Flexiv

Rizon 4 robotic arm with a 6-DoF OyMotion ROHand. Two
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Fig. 2: Robot Platform and Hybrid Dexterous Teleoperation
System. Our platform consists of a Flexiv robotic arm equipped
with an ROHand. During teleoperation, the arm is controlled via
a VR joystick, where the joystick button can be used to pause
arm motion and adjust the joystick pose for more intuitive and
convenient operation. For hand control, we use a GForce glove to
directly operate the ROHand using joint correspondence.

Intel RealSense D415 cameras provide global observations to
mitigate occlusions, while a wrist-mounted Intel RealSense
D435 camera is used for calibration only.

We design a VR-glove hybrid system for teleoperation
with dexterous hands in a single-arm setup. A Meta Quest
3 VR headset tracks its joystick pose to control the arm
movements, while the operator uses the other hand with a
glove to capture precise hand motions for dexterous hand
manipulation, as shown in Fig. 2. For the ROHand, we use
an OyMotion GForce glove, which measures the human hand
motions corresponding to each dexterous hand joint using
pressure tablet sensors, and maps these measurements into
joint signals to control the dexterous hand.

Compared to pure vision-based systems [10, 25, 41, 62]
and discretized gesture systems [33, 35] for dexterous hand
teleoperation, our system leverages motion-capture gloves to
provide more precise and intuitive hand control. When com-
bined with arm teleoperation, prior approaches often coupled
VR joysticks (or similar localization devices) directly with
the gloves [35, 51], which we found to greatly restrict robotic
arm rotation during teleoperation. In contrast, our decoupled
design allows greater flexibility in arm motion. Furthermore,
inspired by [15], we introduce a “pause” mechanism using a
joystick button that lets the operator pause arm teleoperation
at any time, reposition the joystick, and then resume control,
as illustrated in Fig. 2. This further improves the flexibility

of our system, making it particularly suited for tasks that
require substantial arm rotations, as demonstrated in §IV-D.

B. Dexterous Hand State Quantization

We obtain N demonstrations during data collection, where
each demonstration is a trajectory {(oi, s(a)i , s

(h)
i )}i, and

oi, s
(a)
i , s

(h)
i denote the observation, arm state, and hand

state at time step i, respectively. Previous methods [30, 55,
60] typically quantize concatenated arm-hand action chunks
{(s(a)i+k, s

(h)
i+k)}Ck=1 with chunk size C. We argue, however,

that this design is inappropriate for two reasons.
First, we should quantize hand actions only, rather

than concatenated arm-hand actions (Fig. 4C) As dis-
cussed in §I, arm and hand actions serve fundamentally
different purposes: the arm primarily manages spatial local-
ization, while the hand governs interaction once the target
region is reached. For example, when opening a jar, the
arm must first move the hand to the correct position on the
lid before the fingers perform the hooking action. Precise
arm control is therefore essential for enabling proper finger
interaction, whereas small inaccuracies in hand control are
often tolerable. This makes hand actions a more natural target
for quantization than concatenated arm-hand actions.

Second, we should quantize single-step hand actions,
i.e., hand states, rather than hand action chunks (Fig. 4D)
Hand action chunks capture temporal motion patterns of
the dexterous hand, so quantizing them directly encodes
these patterns into the codebook [60], leading to rapid
codebook expansion compared to state-level quantization.
Importantly, when hand action chunks are quantized, they
must be classified from a discrete chunk codebook, whereas
arm action chunks are typically generated via the diffusion
process [2, 11, 19, 53]. This mismatch in action generation
methods disentangles the two processes and can severely
disrupt arm-hand coordination. For example, when opening
a jar, the fingers’ hooking motion should only occur once
the arm has correctly positioned the hand on the lid. If the
hand motion is triggered too early due to the separation of
arm and hand action chunk generation, the fingers may miss
the lid or collide with the jar, causing manipulation failures.

To avoid these issues, we adopt single-step hand action
quantization, i.e., hand state quantization. Concretely, we
extract hand states s(h) from the demonstration dataset D
and train a two-layer residual VQ-VAE [66] to discretize
them, as shown in Fig. 3 1⃝. Each hand state s(h) is encoded
into a latent ze, quantized by nearest-neighbor lookup in
hierarchical codebooks {zq}, and then decoded to reconstruct
ŝ(h). The model is optimized with the standard VQ-VAE loss,

L = ∥s(h) − ŝ(h)∥22 + β∥sg[ze]− zq∥22 + γ∥ze − sg[zq]∥22,

where sg[·] denotes the stop-gradient operator, and β, γ are
weighting coefficients. The first term enforces reconstruction,
while the latter two promote stable codebook usage.

C. Continuous Relaxation of Discretized Hand State

After quantizing hand states, we merge the multi-layer
codebooks into a unified codebook with K discrete hand
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Fig. 3: DQ-RISE Policy Architecture. 1⃝ Hand state data from demonstrations are used to train a residual VQ-VAE [66] for hand state
quantization (§III-B); 2⃝ The trained codebooks yield K quantized hand states, which are re-indexed to maintain consistency between
consecutive codes and sequential continuity across all codes (§III-C); 3⃝ The original hand states/actions are replaced by these re-indexed
states in the demonstration dataset (§III-D); 4⃝ The visuomotor policy is trained on the transformed dataset, jointly diffusing arm and
hand actions; during inference, the predicted continuous hand actions are projected to the nearest quantized actions for execution (§III-D).

state codes. A natural approach is to formulate hand action
prediction as a classification problem and use a classification
head to predict future hand actions. However, as discussed
in §III-B and validated in our experiments, decoupling arm
and hand action generation often leads to mismatched actions
and degraded performance. Hence, we consider integrating
the discrete hand states into arm action chunk diffusion. We
draw inspiration from the gripper: in practice, we usually
only focus on whether it is open or closed, yet the visuomotor
policy predicts a continuous value, as the transition from
fully closed to fully open is inherently smooth and consistent.
By analogy, if a consistent and continuous direction can be
identified in the discrete hand state space, these states can
likewise be predicted in a continuous manner and seamlessly
integrated into the diffusion process.

To this end, we propose a continuous relaxation of the
discretized hand states by re-indexing them in a continuous
order. Instead of operating in the VQ-VAE latent space, we
directly apply principal component analysis (PCA) [24] to
the raw 6-DoF hand states. Projecting onto the first principal
component, which captures the largest variance, provides
a one-dimensional representation that reflects the dominant
trend of hand motion. The quantized hand states are then
sequentially re-indexed along this axis, as shown in Fig. 3 2⃝.

This design ensures that neighboring states in the re-
indexed sequence correspond to similar hand configurations
in the original hand state space, yielding a coherent ordering
of gestures. By contrast, applying PCA on high-dimensional
VQ-VAE features does not guarantee that adjacent indices
represent semantically consistent hand poses. Our approach
therefore provides a more interpretable continuous relaxation
of the discretized hand states.

D. Visuomotor Policy Learning

After re-indexing the discretized hand states, we relabel
each hand action a(h) in the dataset with its corresponding
quantized, ordered index z(h). The demonstration trajectory
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can thus be represented as {(oi, (s(a)i , z
(h)
i ))}i, as shown in

Fig. 3 3⃝. We then train a base visuomotor policy by using
the observation oi as input and a chunk of concatenated
future arm and re-indexed hand actions {(s(a)i+k, z

(h)
i+k)}Ck=1

as output, as shown in Fig. 3 4⃝. During inference, the pre-
dicted continuous hand action ẑ(h) is mapped to its nearest
quantized code idx = [ẑ(h)], from which the corresponding
hand state s

(h)
idx is retrieved for execution.

We adopt RISE [53] as the base visuomotor policy for
its strong spatial generalization. Point clouds from the two
cameras are first combined using the calibrated extrinsics,
and cropped to the workspace region, then fed into the RISE
policy to predict future arm-hand action chunks.

IV. EXPERIMENTS

In the experiments section, we aim to address the fol-
lowing research questions: (Q1) Can our DQ-RISE policy
handle diverse dexterous manipulation tasks? (Q2) Which
action prediction scheme yields the best performance in
visuomotor policies for dexterous manipulation? (Q3) Is the



Pull Tissue. Grasp and pull out a piece of tissue, and place it in the bowl. 

Init. Grasp the tissue

Open Jar. Hook the jar lid with fingers, rotate and lift to open it.

Collect Toy. Pick the toy on the tabletop and place it into the basket.
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Toast Bread. Pick the bread in the bowl, insert it into the toaster, and 
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Open Oven. Hook the oven handle to partially open the oven door, then 
press down the oven door until it fully opens.

Init. Ready to grasp Grasp the bottle Ready to pour Pour the rice into pot

Pour Rice. Grasp the bottle, and pour the rice in the bottle into the pot.

Fig. 5: Task Descriptions. We evaluate six tasks covering pick-and-place (Pull Tissue, Collect Toy), articulated object manipulation
(Open Jar, Open Oven), tasks requiring large rotations (Open Jar, Pour Rice), and a long-horizon task (Toast Bread). Each task is
illustrated with several phases, with the stages used for success rate evaluations highlighted in blue.

Policy Pull Tissue Open Jar Collect Toy Pour Rice Open Oven Toast Bread Avg.
Grasp Place Hook Open Grasp Place Grasp Pour Hook Press Grasp Insert Press

RISE [53] 75% 45% 80% 55% 60% 60% 90% 80% 100% 90% 80% 20% 0% 55.00%
RISE-S 75% 55% 60% 45% 75% 70% 95% 85% 95% 95% 75% 25% 20% 61.67%
DQ-RISE-C 15% 10% 0% 0% 0% 0% 0% 0% 20% 5% 0% 0% 0% 2.50%
DQ-RISE (ours) 95% 85% 95% 90% 95% 80% 100% 100% 100% 100% 100% 65% 60% 85.83%

TABLE I: Evaluation Results. We report the success rates of every policy in certain task phases (Fig. 5). DQ-RISE outperforms other
action prediction variants and can complete various dexterous manipulation tasks effectively, even on the challenging Toast Bread task.

continuous relaxation process of the DQ-RISE policy essen-
tial for effective learning? (Q4) How does manual hand-state
quantization during data collection differ from our automatic
quantization in policy training? (Q5) Does our VR-glove
hybrid teleoperation system provide a more intuitive single-
arm teleoperation interface for dexterous hands?

A. Setup

Tasks. We design 6 tasks to evaluate the policies on
dexterous manipulation in the real world, including pick-and-
place operations, articulated object manipulation, tasks with
significant rotations, and long-horizon tasks. Please refer to
Fig. 5 for detailed descriptions of each task.

Baselines. We compare our DQ-RISE policy against three
baselines for integrating dexterous hand action prediction: (1)
the base visuomotor policy (RISE, Fig. 4A), which predicts
concatenated arm-hand action chunks; (2) the base visuomo-
tor policy with separate diffusions (RISE-S, Fig. 4B), which
uses two diffusion heads for arm and hand action generation;
and (3) the base visuomotor policy with quantized hand
action classification (DQ-RISE-C, Fig. 4E), which diffuses
arm actions first and then classifies quantized hand actions
using action features and the predicted arm action. We omit
other baselines (Fig. 4C and Fig. 4D) according to the
previous discussions in §III-B.

Implementations. We train a two-layer residual VQ-
VAE [66] with a codebook size of 4 for each layer, resulting
in K = 16 quantized hand states per task. We set the both the

commitment cost and codebook usage weight β = γ = 1.67.
The residual VQ-VAE is optimized using Adam [26] with a
learning rate of 3×10−4, a batch size of 256 for 1500 epochs.
Other policy hyperparameters follow RISE [53].

Protocols. We use our VR-glove hybrid dexterous tele-
operation system (§III-A) to collect 50 teleoperated demon-
strations per task, and use these demonstrations to train the
policies. We deploy the policies on a workstation with an
NVIDIA RTX 3090 GPU. Following [12, 19, 57], object
positions are randomized within the workspace before each
task. Each policy is evaluated over 20 trials per task, and we
report the overall success rate as the primary task completion
metric, along with success rates broken down by task phases.

B. Results

DQ-RISE policy is able to effectively handle a wide
range of dexterous manipulation tasks (Q1). It achieves
the highest success rates across all six evaluated tasks, with
an average success rate of 85.83%. Beyond basic pick-and-
place operations and articulated object manipulation such as
opening an oven or a jar, DQ-RISE can also perform more
complex long-horizon tasks like Toast Bread. Many of these
tasks require the hand to adaptively switch between distinct
poses at different stages. For example, in the Toast Bread
task, the robot first uses its thumb and index finger to grasp
the bread, and after placing it into the toaster, employs its
index and middle fingers to press the button. Importantly,
our quantized hand states prove sufficient for such tasks,



reinforcing our design motivation: the arm primarily handles
localization, while the hand only needs to memorize certain
action patterns. Our quantization dramatically reduces the
size of the hand state space, enabling the policy to con-
centrate on the more challenging problem of precise arm
localization during manipulation.

Our action prediction scheme with joint arm and
quantized hand action prediction, achieves the best per-
formance among all alternatives (Q2). This result further
demonstrates that quantizing hand states facilitates effective
arm action learning and arm-hand coordination, while still
preserving fine-grained hand actions to a large extent. In
contrast, the vanilla approach of directly concatenating arm
and hand action spaces (RISE) struggles with fine-grained
localization. For example, in the Pull Tissue and Collect Toys
tasks, accurate localization is essential not only for grasping
the tissue or toy but also for placing them precisely into the
bowl or basket. These difficulties verify our hypothesis from
§I that the high-DoF hand state tends to dominate the action
space, making learning less effective. Naively separating the
arm and hand action predictions (RISE-S) alleviates this issue
and improves performance on most tasks, but fails on the
Open Jar task, where tight arm-hand coordination is crucial
to hook and rotate the lid, as illustrated in Fig. 1.

Combining classification with diffusion-based action
generation on the same conditioning feature can intro-
duce inconsistent gradient flows during training, ulti-
mately degrading policy performance (Q2). In our ex-
periments, DQ-RISE-C rarely succeeds in completing tasks.
We observe that while the policy often predicts arm actions
quite well, failures in hand state classification — such as
prematurely changing the hand pose — distort subsequent
observations, push the arm trajectory out of distribution, and
ultimately cause rollouts to collapse. One possible expla-
nation is that, since quantized hand actions are classified
conditioned on the predicted arm action, distribution shift
in arm predictions during inference could harm classifi-
cation. However, an ablation study on whether to include
this arm-conditioning route (Fig. 6A) shows a negligible
effect, ruling out this factor. We thus attribute the failure
primarily to inconsistent gradient flows between the arm
diffusion head and the hand classification head, which hinder
effective joint optimization and result in suboptimal learning.
Similar interference between classification and regression
objectives has been documented in multi-task learning [47,
65], and comparable observations have been made in other
visuomotor policies [21]. These findings further validate our
design choice to apply continuous relaxation to quantized
hand states, avoiding a classification objective and ensuring
consistent gradient propagation during training.

C. Ablations

The continuous relaxation process is essential for
effective policy learning (Q3). We select the Open Jar
task as an example to ablate the function of the continuous
relaxation process. As shown in Fig. 6B, removing re-
indexing leads to a substantial drop in policy performance,
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Fig. 6: (A) Ablation of Arm Conditioning in DQ-RISE-C. The
policies perform similarly regardless of whether arm conditioning
is applied during hand code classification. (B) Ablation of Con-
tinuous Relaxation in DQ-RISE. Perform continuous relaxation
(i.e., re-indexing) enhances the interpretability of the predicted hand
codes, and significantly boosts performance.

whereas our policy achieves a much higher success rate.
Without continuous ordering, neighboring code indices may
correspond to very different hand states, making policy
learning difficult and unstable. Moreover, non-continuous
codes reduce the policy’s tolerance to prediction errors: even
a small mistake could map to a drastically different hand
configuration. In contrast, continuous code indices ensure
that nearby predictions correspond to similar hand states,
improving robustness and allowing the policy to coordinate
arm and hand actions more reliably. This confirms that
continuous relaxation is a key component in DQ-RISE.

The continuous relaxation process makes quantized
hand state codes interpretable and allows their indices
to be predicted continuously (Q3). As illustrated in Fig. 7,
neighboring code indices correspond to smoothly varying
hand poses, and interpolation between indices yields mean-
ingful intermediate hand configurations. This continuous,
structured representation enables the policy to predict arm
and hand actions jointly, without needing separate treatments
for arm prediction and hand prediction.

D. User Study

We conduct a user study to evaluate our VR-glove hybrid
dexterous teleoperation system against three alternatives: (1)
a coupled arm-hand control system, where the VR joystick
is attached to the user’s wrist and the glove controls the
robotic hand; (2) a discretized gesture system, in which users
control the hand via discrete gestures (e.g., keyboard inputs)

Teleoperation System Open Jar Avg.
Rank ↓

Success Rate ↑ Time (s) ↓

Coupled arm-hand control 5 / 6 25.17 3.83

Ours w/ discretized gesture 6 / 6 20.50 2.83
Ours w/o pausing 6 / 6 16.67 2.25
Ours 6 / 6 13.83 1.08

TABLE II: User Study Results. Our arm-hand decoupled tele-
operation system with a pausing mechanism is both intuitive and
convenient to control the arm and the dexterous hand, improving
success rates and reducing completion time during teleoperation.
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Fig. 7: Quantized Hand State after Re-Indexing. Hand states
are projected into 3D points via UMAP [37], with selected points
annotated by their corresponding hand poses for reference. Re-
indexing in the continuous relaxation process makes code transi-
tions continuous and interpretable in the hand states, supporting
further joint arm action and quantized hand action diffusing.

while using the same VR device for arm motion; and (3) a
variant without a pausing mechanism, which does not allow
pausing the arm during teleoperation. Six participants with
varying teleoperation experience has 3 minutes to familiarize
themselves with each system before attempting the Open Jar
task in randomized order. Afterward, they are asked to rank
the systems by intuitiveness and convenience.

Our VR-glove hybrid teleoperation system provides a
more intuitive single-arm interface for dexterous hands
(Q5). As shown in Tab. II, it achieves the highest success rate
(6/6), shortest completion time (13.83s), and best average
rank (1.08). The coupled arm-hand system performs the
worst due to the severe rotations required for the Open
Jar task, making the teleoperation control difficult. The dis-
cretized gesture and no-pausing variants improve over it, but
still fall short in intuitiveness and convenience, respectively.
These results demonstrate that integrating continuous glove-
based hand control with VR-based arm control and a pausing
mechanism enhances efficiency, reduces cognitive load, and
improves coordination, confirming our system’s superiority

for single-arm dexterous manipulation.

V. CONCLUSION

In this work, we explore visuomotor policy learning on
dexterous manipulations from the action prediction per-
spective. Our study highlights that successful manipulation
depends not only on fine-grained hand motions but also on
precise arm localization and coherent arm-hand coordination.
Existing approaches, which either combine or fully separate
arm and hand action spaces, often suffer from imbalanced
learning or degraded coordination. To address these chal-
lenges, we propose DQ-RISE, which quantizes dexterous
hand states into a compact set of task-relevant patterns
and jointly diffuses them with arm actions, allowing the
policy to focus on accurate arm localization while retaining
dexterous hand capabilities. We also introduce a hybrid
dexterous teleoperation system to support intuitive and con-
venient demonstration collection. Experiments across diverse
dexterous tasks show that DQ-RISE consistently achieves the
best overall performance, validating the effectiveness of our
structured action prediction framework.

Looking ahead, we see two promising directions for future
research. First, extending DQ-RISE to multi-task learning
presents challenges, as hand state quantization may intro-
duce diverse hand states as codes when task distributions
vary widely, potentially requiring adaptive or hierarchical
quantization schemes. Second, the continuous relaxation
that underpins joint arm-hand diffusion could become more
difficult to stabilize in multi-task or long-horizon settings,
motivating the exploration of improved relaxation techniques
or hybrid discrete-continuous formulations. Addressing these
challenges would further advance the scalability and general-
ization of visuomotor policies, paving the way for robust and
versatile dexterous manipulation in real-world environments.
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