Yinong He

734-465-8368 | heyinong@umich.edu | hyn-kulu.github.io

Education

UM-SJTU Joint Institute

B.S.E. in Data Science and Electrical and Computer Engineering

• Completed the program with two years at the University of Michigan and two years at Shanghai Jiao Tong University.

University of Michigan

B.S.E in Data Science

Shanghai Jiao Tong University

B.S.E. in Electrical and Computer Engineering

Research Interests

Embodied AI, Human-Robotics Interaction, Planning, Robotic Manipulation, Large Language Model

WORKING PAPER AND PUBLICATION

- Teaching Embodied Reinforcement Learning Agents: Informativeness and Diversity of Language Use Yinong He^{*}, Jiajun Xi^{*}, Jianing Yang, Yinpei Dai, Joyce Chai Accepted at EMNLP 2024 Main Conference (* indicates equal contribution) [Paper]
- Implicit Contact Diffuser: Sequential Contact Reasoning with Latent Point Cloud Diffusion Zixuan Huang, Yinong He^{*}, Yating Lin^{*}, Dmitry Berenson Under review at ICRA 2025 (* indicates equal contribution) [Paper] Best Technical Contribution Award at Michigan AI Symposium

Patent

1. Knowledge-Graph based Question-Answer System for Geology Dataset Ze Zhao, Bin Lu, Jinwen Wu, **Yinong He**, Xiaoying Gan, Luoyi Fu, Xinbing Wang

RESEARCH EXPERIENCE

Autonomous Robotic Manipulation Lab Advisor: Dmitry Berenson, Associate Professor in Robotics & EECS Department	May 2024 – Present Ann Arbor, Michigan	
• Developed a cable routing task within the Mujoco environment, and created a scripted policy for data collection.		
• Designed embodied grounding tasks for rope manipulation, and trained the 3D-aware LLM to ground the 3D scene,		
interpret user commands, and predict the final states of deformable ropes with the laten	t diffusion model.	

• Trained a Neural Descriptor Field (NDF) for encoding the rope representations and improved the LLM's grounding ability significantly. Aligned diffusion model's latent space with NDF features for guiding the goal generation.

Situated Language and Embodied Dialogue Lab

Advisor: Joyce Chai, Professor in EECS Department

- Designed and developed an offline reinforcement learning algorithm to build embodied agents capable of functioning effectively with human-provided language feedback.
- Conducted empirical studies across four RL benchmarks, demonstrating that agents trained with diverse and informative language feedback achieved enhanced in-domain performance and effective transfer to new tasks with human language instructions.
- Investigated which task settings allow language inputs to most effectively aid agents, and analyzed agent performance under adversarial attacks or varying language frequency scenarios.

Ann Arbor, Michigan Sept. 2023 – May 2025

Sept. 2021 - May 2025

Ann Arbor, Michigan / Shanghai, China

Shanghai, China Sept. 2021 – Aug. 2023

Aug. 2023 – Present Ann Arbor, Michigan

Selected Projects

Reasoning-Guided Video Generation for Robotic Manipulation

Course Project for EECS692 Advanced Artificial Intelligence.

• Applied the diffusion model for video generation, leveraged foundation models for interpreting the robots' behaviors and providing instructions, and used the image-editing model for generating corrected subgoals. The pipeline significantly improved the robot's performance in the simulation.

Enhance Distilled Feature Field for Compositional Language Query

Course Project for ROB498 Deep Learning for Robot Perception

- Trained a distilled feature field with CLIP and NeRF for interpreting and rendering the scene.
- Designed a pipeline leveraging the DBSCAN clustering algorithm and GPT4 to overcome the bag-of-word problems with CLIP representations and handle complex language queries when grounding the scene.

Empowering VLM with Spatial Reasoning Ability

Course Project for EECS498 Large Langauge Model

- Reproduced the SpatialVLM pipeline for augmenting data by lifting 2D images to 3D point clouds and extracting spatial relationships. Finetuned the LLaVA model with the generated data.
- Calibrated LLaVA's bias towards trusting the given spatial relationships.

Awards

Best Technical Contribution Award @ Michigan AI Symposium	Oct. 2024
Dean's Honor List	Apr. 2024
Dean's Honor List	Dec. 2023
Silver Medal in University Physics Competition	Nov. 2022
Shanghai Jiao Tong University Science and Technology Scholarship	May 2023

LANGUAGE PROFICIENCY

- TOEFL: 113 (Reading: 30, Listening: 28, Speaking: 26, Writing: 29)
- GRE: 331 (Verbal: 161, Quant: 170)

Teaching Experience

Grader for EECS498 Large Language Models	Aug. 2024 – Dec. 2024
Instruction Assistant for MATH186 Honors Calculus II	Aug. $2022 - Jan. 2023$

Selected Coursework

- Advanced Artificial Intelligence (A)
- Large Language Models (A+)
- Deep Learning for Robot Perception (A)
- Introduction to Machine Learning (A)
- Data structure and Algorithms (A+)
- Discrete Stochastic Process (A)
- Combination and Graph Theory (A+)
- Differential Equation (A+)

EXTRA CURRICULUM

Minister of Student Science, Technology and Innovation Association

- Prepared for workshops intended for students in the department.
- Organized the Robotics Competition in the department.

Class Advisor

• Assisted class students in their coursework, research, and future plans.

Aug. 2022 – Jun. 2023

Instructor: Xiaoxiao Du

Instructor: Samet Oymak

Instructor: Joyce Chai